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The influence of an external laminar flow on the spreading of a viscous gravity current
moving over a horizontal floor is studied theoretically and experimentally. The viscous
stress exerted by the ambient flow drives the viscous gravity current streamwise with
a velocity proportional to the local height of the current. The one-way coupling
between the ambient flow and the spread of the current is examined. Similarity and
numerical solutions are developed to describe viscous gravity currents spreading from
line and point sources. An experimental study of the spreading of viscous gravity
currents issuing from a point source in a channel flow, for both constant-flux and
instantaneous releases, confirms the essential character of this description.

1. Introduction
Viscous buoyancy-driven gravity currents are observed in a wide range of chemical-

engineering flows and environmental flows, such as the manufacture of laminated
boards where a reacting viscous fluid is introduced onto moving surfaces, or in the
context of lava flows down the sides of mountains. (A comprehensive review of
gravity currents is given by Huppert 2000.) In many problems, the fluid outside the
gravity current may be moving, after having been set in motion either by the gravity
current displacing it or because of an external pressure field. The effect of a uniform
ambient flow is to advect high-Reynolds-number compositional and particle-driven
gravity currents (Hallworth, Hogg & Huppert 1998; Hogg & Huppert 2001a,b) with
an additional velocity proportional to the local ambient flow. But, for viscous gravity
currents the ambient flow exerts an interfacial drag on the gravity current, driving
the current streamwise. Practical situations in which this occurs are stratified liquid–
liquid flows in pipes and the later stages of the development of a gravity current in
an ambient flow where the boundary layer thickness is much larger than the size of
the viscous current. The aim of this paper is to examine the influence of an ambient
laminar flow on the development of a viscous gravity current.

A large number of studies have focused on the spreading of viscous gravity
currents. Didden & Maxworthy (1982) studied experimentally the flow of viscous
gravity currents moving under free surfaces and over rigid walls, and developed a
physical model to explain the observed scalings for the rate of encroachment. Huppert
(1982) followed that study with a detailed analysis of planar and axisymmetric viscous
gravity current flows and was able to confirm the collapsed scalings of Didden &
Maxworthy (1982), in addition to performing additional experiments using silicone
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Figure 1. A schematic of a viscous gravity current moving in (a) an external laminar flow
and (b) a channel flow, is shown. The gravity current’s height is exaggerated.

oils moving in air. Huppert (1982) confirmed that for small Bond numbers, the
dynamics of the viscous gravity currents are weakly dependent on complex conditions
associated with the contact lines at the nose. Relevant to the work we describe is
the detailed analysis by Lister (1992) of gravity currents flowing down inclined walls
where, for long time, gravitational acceleration is the main force driving the fluid
down the wall. Lister (1992) developed similarity solutions for the spread of gravity
currents characterized by low Bond numbers and demonstrated good agreement with
his experimental observation.

The aim of this paper is to examine the influence of an external laminar flow on the
development of a viscous gravity current moving over a horizontal rigid boundary.
We focus on thin viscous gravity currents whose influence on the ambient flow is
negligible. The external flow exerts a viscous stress on the surface of the gravity
current and drives the current streamwise. The underlying equations developed by
coupling mass continuity and momentum equations are reduced to a similarity form
and applied to study viscous gravity currents generated by line and point sources. A
series of laboratory experiments were undertaken, to test the analysis developed, and
these are reported in § 5.

2. Mathematical model
2.1. Vertically averaged description

The problem considered is shown schematically in figure 1(a), where a viscous gravity
current is driven streamwise by an external ambient laminar flow. We first consider
a thin gravity current moving in a laminar viscous channel flow (figure 1b), before
extending the analysis to viscous gravity currents moving in a more general external
ambient laminar flow. A viscous liquid (denoted by the subscript 2) is introduced
from a source and forms a viscous gravity current in a steady planar channel flow
(bounded by walls, separated by a distance w) of a fluid (denoted by the subscript 1).
The depth-averaged flow of the ambient fluid is characterized by a mean upstream
speed Uf , and driven by a constant pressure gradient dP/dx.

The viscous forces are assumed to be large compared with inertial forces, and the
current is sufficiently shallow for motion perpendicular to the direction of flow of the
gravity current to be neglected. The flow is described by Stokes’ equation,

0 = −∇pi + µi

∂2ui

∂z2
+ ρigẑ, (2.1)
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for i = 1, 2, where ui is the velocity in fluid i and pi is the corresponding pressure
field, and ρi and µi are density and viscosity of the fluid respectively. A horizontal
constant pressure gradient dP/dx is applied to drive the ambient fluid along the
channel. The pressures in the two layers of liquid are

p1 = P (x) + ρ1g(w − z), p2 = P (x) + ρ1g(w − h) + ρ2g(h − z). (2.2)

The horizontal momentum equations can be integrated vertically to obtain

µ1u1x = K1

[
1
2
(z − w)2 + a1(z − w)

]
, µ2u2x = K2

[
1
2
z2 + a2z

]
, (2.3)

where the no-slip conditions (u1x = 0 at z = w, u2x = 0 at z = 0) have been applied
on the bottom and top of the channel, and

K1 =
dP

dx
, K2 =

dP

dx
+ (ρ2 − ρ1)g

∂h

∂x
. (2.4)

The constants a1 and a2 are calculated by matching the horizontal component of
velocity and the tangential shear stress across the interface between the gravity
current and ambient fluid. When the gravity current is thin (h/w → 0), the mean flow
of the ambient fluid is unchanged from its upstream value and a1 → w/2 so that
K1 = −12Uf µ1/w

2. In this limit, a2 → K1w/2K2, and the depth-averaged flow in the
gravity current tends to

u2x =
h2K2

6µ2

+
K1wh

4µ2

= −ρ1g
′h2

3µ2

∂h

∂x
+ 3

h

w

µ1

µ2

Uf , (2.5)

where g′ = g(ρ2 − ρ1)/ρ1. In the limit of h/w → 0, the change in u1x is negligible.
The form of the driving force could be deduced in a more physical manner by
noting that as h/w → 0, the tangential shear stress exerted on the gravity current
tends to the shear stress exerted on the channel walls in the absence of the gravity
current, τ = µ1du1x/dz‖z=0. The additional effect of the shear stress is to increase the
depth-averaged streamwise velocity in the thin gravity current by

hτ

2µ2

=
hµ1

2µ2

du1x

dz

∣∣∣∣
z=0

=
3Uf hµ1

wµ2

. (2.6)

Combining (2.5) with the depth-averaged mass conservation equation yields

∂h

∂t
=

ρ1g
′

3µ2

∂

∂x

(
h3 ∂h

∂x

)
− τ

4µ2

∂h2

∂x
. (2.7)

We study currents generated by a line source when the volume added is qtα .
Equation (2.7) is solved subject to a mass flux condition at the source which is
expressed, for a planar flow, in the integral form∫ xN

−xT

hdx = qtα, (2.8)

where the gravity current lies in the region mapped out by −xT < x < xN .
For a gravity current generated by a point source, we must include the additional

cross-flow in the y-direction, u2y = −(ρgh2/3µ2)∂h/∂y. The flow is described by

∂h

∂t
=

ρ1g
′

3µ2

∂

∂x

(
h3 ∂h

∂x

)
+

ρ1g
′

3µ2

∂

∂y

(
h3 ∂h

∂y

)
− τ

4µ2

∂h2

∂x
. (2.9)
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The conservation of mass for a planar point source, expressed in an integral form, is∫ xN

−xT

∫ yW (x)

−yW (x)

hdydx = Qtα, (2.10)

where the gravity current lies in the region mapped out by −xT < x < xN and
|y| < yW .

The form of the above equation is similar to those that describe viscous flows down
inclined surfaces where the driving term is proportional to h2 (Lister 1992) or for
viscous flow transported along moving belts, where the driving term is proportional
to h0 (Eames, Gilbertson & Wright 2002). Equation (2.7) is a member of a broad
class of nonlinear advection equations and can be analysed in the same way as other
similar lubrication equations using the framework of analysis developed by Lister
(1992). For a short time or when the viscosity of the ambient fluid is much smaller
than the gravity current, the influence of the driving viscous stresses induced by the
ambient laminar flow is weak and the resulting equations (2.7) and (2.9) reduce to
those discussed and solved by Huppert (1982). Here we strictly focus on the long-time
behaviour when the shear stress exerted on the surface of the viscous gravity current
is important and the second and third terms in (2.7), or the third and fourth terms in
(2.9), are comparable.

3. Similarity solutions for a line source
Equations (2.7) and (2.8) may be non-dimensionalized for a line source by using

the scalings T = t/T ∗, X = x/X∗, and H = h/H ∗ where

X∗ =

(
3µ2

ρ1g′

)(α−1)/(α−3)

Q−2/(3−α)

(
τ

4µ2

)(α+1)/(α−2)

,

H ∗ = Q−1/(α−1)

(
3µ2

ρ1g′

)(α−1)/(α−3) (
τ

4µ2

)(2α−1)/(α−3)

,

T ∗ = Q−1/(α−3)

(
τ

4µ2

)5/(α−3) (
3µ2

ρ1g′

)2/(α−3)

.

This results in
∂H

∂T
=

∂

∂X

(
H 3 ∂H

∂X

)
− ∂H 2

∂X
, (3.1)

and ∫ XN

XT

HdX = T α. (3.2)

Equation (3.2) possesses similarity solutions of the second kind (Barenblatt 1996)
which are derived by employing the transformation s = log T , φ = HT −(α−1)/2 and
ζ = XT −(α+1)/2 which reduces (3.1) to

φs + αφ =
(

1
2
(α + 1)φζ + φ3φζ − φ2

)
ζ
+ e(α−3)s/2, (3.3)

and the integral constraint imposed on the solution is now
∫

φdζ = 1. We have
restricted our attention to viscous gravity currents which are much thinner than the
channel height so that α � 1 and H ∗ � w. As s → ∞, the similarity solution of (3.3)
ultimately tends to

αφ = 1
2
(α + 1)(φζ )ζ − (φ2)ζ , (3.4)
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Figure 2. (a) Height and length of the similarity gravity currents generated by a line source,
for different values of α. (b) The shape of the gravity current is shown for α = 0, 1

2
, and 1.

whose solution is expressed implicitly as

ζ = 2

(
φ−2/(α−1) − φ

−2/(α−1)
0

φ(α+1)/(α−1)

)
, (3.5)

where φ0 = φ(0).
The two conditions which determine the solution are the boundary condition

φ0 = α1/2 (which arises because the flux of fluid is equal to α in dimensionless form)

and the integral constraint
∫ ζN

0
φdζ = 1. Two solutions which may be determined

analytically are the case of an instantaneous release of fluid, where

φ(ζ ) = ζ/2, ζN = 2, φN = 1 (α = 0), (3.6)

and the case of a constant-flux source,

φ(ζ ) = 1, ζN = 1, φN = 1 (α = 1). (3.7)

The length (ζN ) and height (φN ) are calculated numerically and are shown in
figure 2(a). Figure 2(b) shows how the long-time similarity solutions vary with α.

It is clear that the gradients of height corresponding to the long-time similarity
solutions are infinite at the front and back of the current. This step change was
resolved by Lister (1992) for his particular system; the case here differs only in the
algebra. The stagnant pond has the form H (X, T ) = [αT (α−1) + X]1/2, so that for
α < 1 the stagnant pond is shrinking with time and would tend to leave a wetted
surface behind, while for α = 1 the pool dimensions do not change. For α > 1, the
pool dimensions grow and at some time later, the solution becomes inconsistent with
the assumption h/w � 1.

According to (3.3), the nose of the current (in similarity variables) has a length
e(α−3)s/2. By transforming into the local coordinates of the gravity current nose (χ, s),
where χ = (ζN − ζ )e(−α+3)s , the leading-order terms reduce to

1
2
(α + 1)φχζN − 2φφχ = (φ3φχ )χ . (3.8)

Integrating this equation twice, we find that the shape of the fluid layer in the vicinity
of the nose is

χ = −φ2
N log

(
1 − φ

φN

)
− φNφ − 1

2
φ2, (3.9)
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Figure 3. Schematic showing the length scales associated with the near-source region, the
far-field region and the boundary layer at the front of the current.

where φN = (α + 1)ζN/2 and the condition φ = 0 at χ = 0 is applied (see figure 3).
Thus according to the above expression, as χ → ∞, the similarity height φ tends to
φN , matching the main body of the flow. As noted by Huppert (1982) and Lister
(1992), the details of the flow in the vicinity of the nose of the current have a relatively
weak influence on the overall dynamics of the gravity current.

4. Similarity solutions for point sources (0 � α � 3/2)
We proceed to develop the analysis to include gravity currents issuing from a

point source. Equations (2.10) and (2.9) can be non-dimensionalized using T = t/T ∗,
X = x/X∗, Y = y/Y ∗ and H = h/H ∗, where

T ∗ =

(
ρ1g

′

3µ2

)3/(5−α) (
τ

2µ2

)−8/(5−α)

Q1/(5−α),

X∗ = Y ∗ =

(
ρ1g

′

3µ2

)(1+α)/(5−α) (
τ

2µ2

)−(3α+1)/(5−α)

Q2/(5−α),

H ∗ =

(
ρ1g

′

3µ2

)−2/(5−α) (
τ

2µ2

)−2(1−α)/(5−α)

Q1/(5−α).

Application of these scalings gives the conservation equations for the gravity current
the forms

∂H

∂T
=

∂

∂Y

(
H 3 ∂H

∂Y

)
+

∂

∂X

(
H 3 ∂H

∂X

)
− ∂H 2

∂X
, (4.1)

and ∫ XN

XT

∫ YW (X)

−YW (X)

HdYdX = T α. (4.2)

where H = 0 at Y = ±YW (X).

4.1. Near-source structure

The near-source flow is controlled by the instantaneous flux out of the source.
Rescaling the characteristic height, length and width of the current as H = H/LH ,
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Figure 4. Comparison between (a) the steady near-source similarity solution (satisfying (4.3)),
determined numerically, and (b) the analytical approximation (4.5), plotted as a function X,
Y. The contours correspond to dimensionless height H = 0.1 to 1, in increments of 0.1.

X = X/L, Y = Y/L where LH = (αT α−1)1/2 and L = L2
H , the local dynamics of the

gravity current are described by

∂

∂Y

(
H3 ∂H

∂Y

)
+

∂

∂X

(
H3 ∂H

∂X

)
− ∂H2

∂X = O
(
T (α−3)/2

)
, (4.3)

where the similarity variables H, Y and X are order unity. The similarity solution
(4.3) is independent of α (for α < 3). Figure 4(a) shows a numerical solution to (4.3),
where a constant-flux source is introduced at the origin. The analysis breaks down
close to the origin (as X, Y → 0) because the source flow leads to a singularity in the
height of the form H ∼ (log(X2 + Y2))1/2; this is reconciled physically because the
source issues from a finite area. As with the line source problem, the near-source flow
needs to be matched onto an advancing contact line for α > 1 or a draining film for
α < 1.

Far downstream of the source (X → ∞), the similarity solution asymptotes to

∂

∂Y

(
H3 ∂H

∂Y

)
=

∂H2

∂X ,

∫ YW

−YW

H2dY = 1, (4.4)

which describes physically a balance between cross-slope spreading by gradients of
hydrostatic pressure and advection by the laminar mean flow. The similarity solution
to (4.4),

H =
31/6

X1/622/3

(
1 − Y2

(9X/4)2/3

)1/2

, (4.5)

is plotted in figure 4(b) and compares favourably with the numerical solution to
(4.3), shown in figure 4(a). According to (4.5), the width of the gravity current is
YW = (9X/4)1/3.
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Figure 5. The similarity solutions to (4.7) for (a) α = 0.5 and (b) α = 1. The contours
correspond to dimensionless height φ = 0.1 to 1, in increments of 0.1.

4.2. Similarity solution (1/3 < α � 3/2)

Similarity solutions of (4.1) and (4.2) of the second kind (Barenblatt 1996) can be
obtained by using the transformations s = log T , φ = HT −(2α−3)/7, ζ = XT −(2α+4)/7

and η = YT −(3α−1)/7. From the transformations, it is clear that in order for the model
to be consistent with the assumption than the gravity current is thin relative to
the channel height, a necessary condition is that α � 3/2. The mass flux constraint
reduces to ∫∫

φdηdζ = 1, (4.6)

and the momentum equation becomes

φs + αφ =

(
(2α + 4)

7
φζ − φ2

)
ζ

+

(
(3α − 1)

7
φη + φ3φη

)
η

+ e(2α−10)s/7(φ3φζ )ζ . (4.7)

The length and width of the current in similarity form, ζN and ηW respectively, are
related to the dimensionless length and half-width through

XN (T ) = ζN (s)T (2α+4)/7, YW (T ) = ηW (s)T (3α−1)/7. (4.8)

Analysis of (4.7) shows that for α > 1/3, the cross-stream diffusive flux of fluid
(−φ3φη) is balanced by the inward −(3α − 1)φη/7 flux, so that φ tends to a constant
solution as s → ∞. The long-time similarity solution then satisfies

αφ =
∂

∂ζ

(
(2α + 4)

7
φζ − φ2

)
+

∂

∂η

(
(3α − 1)

7
φη + φ3φη

)
. (4.9)

However, for α � 1/3, the similarity solution grows with time and we must resort to
a blend of numerical solution and asymptotics.

Numerical solutions to the above equation were developed by introducing a source
of strength α at the origin (η, ζ ) = (0, 0). The strength of the source was set to ensure
that as s → ∞, the volume of fluid deposited is unity. Equation (4.7) was solved
using a finite difference scheme, explicit in time, second-order accurate in space, that
employed the Il’lin scheme (Clauser & Kiesner 1987). Numerical viscosity was added
in the ζ -direction to smooth out oscillations.

For 1/3 < α � 3/2, the similarity solution ultimately tends to a steady state. Two
representative similarity solutions are plotted in figure 5. The ultimate length and
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Figure 7. Schematic of the spreading of fluid from a point source for 1/3 < α � 3/2.

half-width of the similarity solution, lims→∞ ζN and lims→∞ ηW , for 1/3 < α < 3/2,
are shown in figure 6. The corresponding dimensionless length and half-width can be
obtained from (4.8). A schematic of the characteristic scales of the flow is shown in
figure 7.

4.2.1. Similarity solution for α = 0

When α � 1/3 the cross-flow flux of fluid (the second term on the right-hand side
of (4.7)) is unbalanced and the width of the current, ηW , in terms of the similarity
variables, increases with time. Here we proceed to develop an asymptotic model for
α = 0, corresponding to an instantaneous release of fluid.

When a fixed volume of dense fluid is released into a channel flow, we anticipate that
the width of the current ultimately tends to a fixed value with increasing time because
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Figure 8. Similarity solution φ for α = 0 at s = 4.5.

cross-stream gradients in hydrostatic pressure are rapidly reduced as the current
spreads in the streamwise direction. From (4.8) the dimensionless half-width of the
gravity current is YW ∼ ηW (s)T −1/7, and so we anticipate that ultimately ηW ∼ es/7.
This is confirmed by the detailed analysis below.

Numerical solutions to (4.7) were obtained by initializing the flow with a unit
volume of fluid, and integrating. We shall show that as s → ∞, the flow occupies the
region 0 < ζ < ζP where ζP is of the form

ζP (η, s) = ζN (s)f (η/ηW (s)) , |η| � ηW (s), (4.10)

where f , ζN (s) and ηW (s) are to be determined. As shown in figure 8, the flow (in the
similarity variables) is one in which contours of φ are essentially parallel to the front
in the boundary layer, and there is a rapid change in φ across the boundary layer.
Within the core of the flow, φ = 4

7
ζ . The total flux in the η-direction is estimated to

be

F (η, s) =

∫ ζP

0

(
1

7
φη − φ3φη

)
dζ =

2

49
ζ 2
P η − φ4

N

4

∂ζP

∂η
. (4.11)

The flux of fluid in the η-direction at a lateral position η′ is equal to the rate of
decrease of the volume of fluid in the region 0 < η < η′, thus

F (η, s) = − ∂

∂s

(
2

7
ζ 2
NηW

∫ η/ηW

0

{f (u)}2du

)
= η

2

7
ζ 2
P

η̇W

ηW

. (4.12)

Equating (4.11) and (4.12) and integrating with respect to η gives

1

49
η2 − 64

7203
ζ 3
P =

1

7
η2 η̇W

ηW

+ c(s), (4.13)
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where the constant of integration c(s) is determined from the requirement that ζP = 0
when η = ηW . Thus,

f (u) = (1 − u2)1/3, ζN =

[
1029

64

(
η̇WηW − 1

7
η2

W

)]1/3

. (4.14)

The volume of fluid released to form the gravity current is unity (see (4.6)), so that

ζ 2
NηW =

7

4

∫ 1

0

{f (u)}2du

=
7(4

3
!)

4
(
22/3

) (
1
3
!
)2

= C ≈ 2.368. (4.15)

Combining the above expressions and integrating,

ηW (s) =

[
es/2

[
η

7/2
W (0) +

64C3/2

147

]
− 64C3/2

147

]2/7

, (4.16)

where the half-width at s = 0 is ηW (0). For s � 1 and ηW (0) = 0 the length and
half-width, in similarity form, tend to

ζN ∼ 1.44 e−s/14, ηW ∼ 1.14 es/7, (4.17)

which in dimensionless variables yields

XN ∼ 1.44T 1/2, YW ∼ 1.14. (4.18)

Thus the length grows diffusively with time and the width ultimately tends to a
constant width. Equation (4.16) shows that the coefficients in (4.18) depend exactly on
how the numerical solutions are initialized. The essential character of the asymptotic
analysis is confirmed both numerically and experimentally in the next section.

5. Experimental study
To illustrate experimentally how a laminar ambient flow affects the spreading of

a viscous gravity current, we consider viscous gravity currents introduced into a
channel flow. A uniform ambient flow of water was generated in a wide long narrow
cell (length 90 cm, width 61 cm and wall separation w = 1.0 cm). The ambient flow
through the channel was driven by a header tank through a flow meter and then a flow
calming section which ensured that the flow was steady and laminar. The Reynolds
number, Re = wUf /ν, was in the range of 20–100, which is sufficiently small to ensure
that the flow was laminar. Although the flow is not viscously dominated, the departure
from a parabolic profile is not severe. But, more importantly, up to Re ∼ 1000 (White
1998, p. 338) the wall shear stress τ , is sufficiently close to the viscous prediction
of τ = 6Uf µ1/w for the experiments to be consistent with the model developed. To
eliminate capillary effects, the gravity currents were generated using a saline solution
fed from a header tank. Under these conditions, the kinematic viscosity of the gravity
current and ambient fluid were assumed to be the same. The entrance to the source
has an internal diameter of 0.4 cm and was flush with the channel floor. Care was
required to ensure that the temperature of the channel flow water and gravity current
water was the same.

A small quantity of fluorescein dye was added to the source fluid to enable
the gravity current to be observed. Two types of experiments were undertaken: a
constant-flux release from a localized source, and an instantaneous release of fluid.
For a constant-flux release, the volume flux was measured from the loss of fluid from
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Figure 9. Experimental measurements of (a) length and (b) half-width of a gravity current
generated from a constant-volume flux issuing from a point source. The fluid density
(ρ2 −ρ1)/ρ1 = 0.022 and the mean flow Uf = 0.91 cm s−1, are fixed for each of the experiments.
The symbols correspond to a volume flow rate Q = 0.67 cm3 s−1 (+); 0.27 (◦); 0.062 (∗). The
full lines in (a) and (b) correspond to the similarity solutions XN = 0.83T 6/7 and YW = 1.0T 2/7

respectively.

the header tank; for the instantaneous release experiments, fluid was injected over a
short time using a syringe.

5.1. Constant flux from point source (α = 1)

For a short time, the gravity current was observed to increase in length as it was
advected downstream, and spread across-stream by gradients of hydrostatic pressure.
The width and length of the gravity current were measured as a function of time
from video film. The experimental measurements were rendered dimensionless using
the characteristic scales, X∗ and T ∗, introduced in § 4.

Some of the flow features observed, such as the formation of the fingers, are a
common feature of gravity currents moving through less dense fluid and are not a
feature of the model developed. Light fluid is trapped near the surface of the channel
which rises up through dense gravity currents, creating long thin filaments whose
separation scales with the gravity current thickness (Synder & Tait 1998). The effect
of the fingers was to increase the thickness of the current and caused the front to be
transported slightly faster than the rest of the current. The filaments were ignored in
measurements of the length of the current – this was achieved by thresholding the
intensity of the digitized images.

Figure 9 shows the variation of the length and width of the gravity current as a
function of time, along with the prediction of the similarity solution corresponding
to α = 1. The agreement between XN and theoretical predictions is satisfactory. Since
the width of the current grows slowly with downstream distance and the length of
the channel is only two decades larger than the source size, the finite size of the
source appears to dominate the sideways growth of the gravity current. Nevertheless,
quantitative agreement is fair. After some time, the near-source behaviour tends to
a steady state and the shape of the edge of the current was measured. Figure 10(a)
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Figure 10. Comparison between experimental measurements and numerical solution of (a)
the shape of the near-source gravity current and (b) the half-width of the gravity current as
a function of downstream distance. The measurements are made for a constant-flux gravity
current. The density of the source fluid and the rate at which is it introduced, were fixed
at (ρ2 − ρ1)/ρ1 = 0.022 and Q =0.031 cm3 s−1 respectively. The symbols correspond to Uf =

2.1 cm s−1 (); 0.22 (+); 0.61 (◦). The ∗ symbol in (a) denotes the position of the source.

shows a comparison between the numerical solution and experimental measurements
of the near-source behaviour of the current and good quantitative agreement is
observed. The width of the current as a function of downstream distance is shown
in figure 10(b), and the similarity prediction, that YW = (9X/4)1/3 (from (4.6)), is
confirmed.

5.2. Instantaneous release of fluid (α = 0)

The generation of an instantaneous release of fluid into the channel flow, correspond-
ing to α = 0, was achieved by rapidly introducing a finite quantity of dense fluid. The
thin gravity current initially spread because of buoyancy forces, but the effect of the
ambient flow was to stretch the current sufficiently rapidly for cross-stream transport
to be quickly inhibited. As with the constant-flux experiments, finger-like intrusions
were clearly observed and these were seen at later time to be advected more quickly
than the current downstream. The width and length of the current (XN , YW ) were
measured by thresholding the intensity of the images to ensure the spurious effect of
the fingers was ignored.

A comparison between the experimental measurements and predictions for α = 0,
are shown in figure 11. The scaling of the length, XN ∼ T 1/2 is adequately repro-
duced, but the leading coefficient systematically differs by 30% from the theoretical
prediction. An analysis of the numerical solutions for α = 0, showed that the eventual
growth rate of the leading-order coefficient is sensitive to the initial size of the gravity
current and how the fluid is introduced. The offset between the numerical predictions,
the analytical model and experiments is related to how the gravity current is initially
introduced into the flow.

Figure 11(b) shows that the width ultimately tends to a constant value, as the
longitudinal stretching of the current rapidly diminishes the height of the current and
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Figure 11. Experimental measurements of (a) the length XN and (b) the half-width YW of a
viscous gravity current generated by an instantaneous release of dense fluid. The fluid density
and the volume released were fixed at (ρ2 −ρ1)/ρ1 = 0.080 and 2 cm3 respectively. The symbols
correspond to different mean velocities: Uf = 2.3 cm s−1 (∗); 1.4 (◦); 0.91 (+); 0.23 (�). The
full lines correspond to the length and half-width of the numerical solutions to (4.7) for α = 0,
while the dashed line corresponds to the approximation (4.18).

X, Y H Comment

Planar source T (2α+4)/7, T (3α−1)/7 T (2α−3)/7 1/3 < α � 3/2
T 1/2, T 0 T −1/2 α = 0

Line source T (α+1)/2 T (α−1)/2 0 � α � 1

Table 1. Summary of characteristic scales of the viscous gravity current. When α > 3/2 and
>1, for planar and line sources respectively, the height of the viscous gravity current will be
so large that it will be incompatible with the modelling assumptions. For planar sources and
0 < α � 1/3, the size of the gravity current must be determined numerically.

inhibits cross-stream spreading. The slight decrease in the half-width of the current is
related to thresholding the intensity of captured images, particularly when the gravity
current was very thin. A numerical solution to (4.7) is also shown in figure 11.

6. Discussion
The influence of an ambient flow on the spreading of a viscous gravity current

fundamentally differs from how a high-Reynolds-number gravity current spreads.
Rather than the ambient flow only advecting the gravity current (Hallworth et al.
1998; Hogg & Huppert 2001a,b), it exerts a viscous stress on the surface of the current,
driving it streamwise. This leads to an additional term in the nonlinear advection
equation which ultimately dominates the rate of spreading. A summary of our main
results for the characteristic scales of the viscous gravity current is shown in table 1.

The main assumption of the analysis is that the gravity current height is smaller
than the boundary layer thickness of the steady ambient laminar flow and a constant
viscous stress is exerted on the viscous gravity current. The gravity current was
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assumed not to affect the ambient flow so that the streamlines in the ambient flow
are not deflected around the gravity current. This places stringent limits on the
applicability of the analysis to 0 � α � 1 for planar currents and 0 � α < 3/2
for currents issuing from point sources. When 0 � α � 1/3, the similarity analysis
presented for point-source releases breaks down and a singularity analysis of the
similarity equations must be developed. We have presented an analysis corresponding
to an instantaneous release of fluid (α = 0).

To test the analysis, we measured how viscous gravity currents spread in a channel
flow, where the experimental conditions are consistent with the modelling assumptions.
The laboratory measurements for constant-flux releases issuing from a point (α = 1)
and instantaneous releases (α = 0) are in good agreement with the theoretical and
numerical predictions. The main difference between the experimental and theoretical
predictions appear to be due to the sensitivity of the leading-order coefficients to the
initial, finite size of the gravity current.

This project arose through a Royal Society Equipment Grant to examine ‘Dispersion
in porous media’ at the School of Mathematics, Bristol University.
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